
Full Convolutional Front-End Code Generation Based on
Web Page Screenshot

Zihao Chen1,a and Xiao Li1,b
1Faculty of Information Technology, Beijing University of Technology, Beijing, China

a. chenzihao000@qq.com, b. 382052461@qq.com

Keywords: Code generation, image caption, CNN, front-end development, DSL.

Abstract:Nowadays, Internet has gained its popularity, so more and more kinds of web
applications need to be developed. For that, software company require a generator to output
front-end code immediately based on web page screenshot to Improve development
efficiency. Using full convolutional algorithm which contains CAE and CNN, we proposed
a method performs better than pix2code. Our method follows the encoder-decoder
framework and add hierarchical attention mechanism into it which learn from image caption
methods. We use the PixCo dataset to complete the experiment.

1. Introduction

Nowadays, Internet has step into a whole new era, as Internet gaining its popularity, more and more
people have become web application user, and it’s an important goal to upgrade user experience on
front-end. Regularly, a company or a software development team develop a front-end project by a
series of step: first, product manager design prototype based on user demands; second, designer
finish UI design based on prototype; last, front-end software engineer complete web application
development. These steps usually come with long period and requirement of large team, but for
those small company, they don’t have such kind of resources, thus a font-end code generator is
needed.

Beltramelli’s pix2code[1] is the first research on generating HTML code based on web page
screenshot. It proposed an encoder-decoder architecture, which using a CNN-based vision model and
a LSTM-based language model as encoders, and a LSTM-based decoder. This method doesn’t
generate HTML code directly, they design a Domain Specific Language (DSL)[8] just for their task.
DSL’s is still a kind of programming language, so it’s more accurate and concise than natural
language. Lots of highly abstract development methods such as model-driven development and
software factories are performed using DSL.

Pix2code still has some limit issues. First of all, its decoder is based on LSTM, which is a variant
of RNN, that is to say, its training and inference must run by time step, so it would consume more
time and computing power cannot be fully used. Secondly, RNN-based neural network is lack of
ability to process structured information, but their DSL has a structured feature of hierarchical
nesting.

To improve generating effectiveness and accurateness, we proposed a new method to generate
front-end DSL with web UI design image. Our method uses full convolutional network on both
encoder and decoder modules. We combine CNN and Auto Encoder as Convolutional Auto Encoder

2020 International Conference on Computer, Network, Communication and Information Systems (CNCI 2020)

Published by CSP © 2020 the Authors 397



(CAE) to complete feature extraction. And for language, we use one-hot encoding and word2vec to
train word embedding. At last, we proposed a CNN-based decoder with hierarchical attention
module.

2. Related Work

In recent years, code generation technology has gained widespread popularity, but automatically
generating code based on images is still an unpopular subject. Software such as OptimalJ and
BorlandC# Builder Enterprise, which appeared in the early 21st century, are relatively early
model-based automatic code generation systems. In the current explosive development of the
Internet, code generation has a large number of application scenarios on the front and back ends, for
example, NHibernate is used to generate Object Relational Mapping (ORM) between Java language
and database SQL on the server side. Vue-cli and create-react-app-cli are template-based command
line scaffold. Taro and mpvue as model-based tools, can form an abstract syntax tree based on
web-side code and generalize it into mini program, Android code or IOS code.

However, generating natural language based on images is a hot research area which is called
image captioning. We can find common ground easily on these two kinds of tasks, that is, both of
them describe objects and their relationship in images with one kind of languages, the only
difference is our task use DSL and image captioning task uses human language. Image captioning is
to understand the visual content presented by analyzing the image data, and to generate the
corresponding reasonable language description. Image description belongs to the cross-technical
field of computer vision and natural language processing, and is a task for performing multi-modal
conversion from image to text. The above task can be given a definition: Given a two-tuple (I, C),
where I represents the original image, C represents the text describing the original image, and the
multimodal mapping I→ C of image I and describing text C is the model we want.

Vinyals et al[2] propose NIC model in their paper, using encoder-decoder framework. They
introduce CNN to encode images data, and LSTM to decode and generate sentences that describe
images. Xu K et al[3] proposed a new model architecture, which introduce soft and hard attention to
caption, and use visualization to understand the effect of attention mechanism. But they still use
CNN+LSTM structure. In their RNN-based encode methods, they process a sentence from the
beginning to the end, and input one word at a time step. The encoder calculates a hidden state every
time step as input of next time step, so they can “remember” former words. But the truth is, we
already knew every single word in the sentence during the training phase, a parallel computing
method would be more efficiency. Aneja et al[7] proposed the first CNN+CNN structure, they use
Gated Linear Unit (GLU)[9] as activation function instead of ReLU, in order to introduce gating
mechanism in CNN.

In this paper, our proposed method is a front-end DSL generator with encoder-decoder framework.
We won’t use CNN+LSTM structure as was proposed in pix2code, instead, we use full
convolutional structure for this task and introduce hierarchical attention mechanism among
convolutional layers to have a better performance.

3. Proposed Method

3.1.Overview

Our method uses an encoder-decoder framework and is consist of three modules: vision encode
module, language encode module, and decode module. The structure is shown in the Figure 1:

398



Figure 1: Architecture diagram.

3.2.Vision Encode Module

Auto Encoder [10] is a neural network designed to copy their input to the output. They work by
compressing the input into a latent-space representation and then reconstructing the output of this
representation. We use a convolutional layer as hidden layer of Auto Encoder and get
Convolutional Auto Encoder. The principle is the same as that of an Auto Encoder. It
down-samples the input symbol to provide a smaller potential representation, and forces the Auto
Encoder to learn a compressed version of the symbol. Structure diagram shows as follow in Figure
2.

However, when the quantity of nodes in hidden layer is more than input and output dimensions,
Auto Encoder cannot learn features we expect, instead, it will directly copy input to output. So, we
introduce sparse control to avoid this kind of situation. Improved equation of cost function and
Kullback–Leibler divergence as follow:

��䀨⍗游�悔 �സ⁶ � � �സ⁶ � � ���
�� �th������ �� (1)

�th������ � � � log �
���
� h�� �� log �t�

�t���
(2)

ρ represent a constant near 0 as sparse parameter. β represent penalty factor used to control
activity of hidden neural unit, and it also near 0.

^

ρi represent one time output hidden layer node j.
We also add a noise layer after input layer to improve encoder’s ability of noise reduction. We

resize all images to 256×256 as input, convolution kernel is 3×3 and stride is 1. We learn from
VGG16’s[4] structure, the first two convolutional layer’s width is 64, and another two layers with
width of 128, then comes three layers of 256 cells, and three layers of 512 cells, at last there is two
layers with 512 cells. We use max-pooling at pooling layers, pooling kernel is 2×2 with stride 2.
Both input layers and output layers’ width is 256. To train CAE, we randomly choose 10000 tiles
which size is 8×8 in all 1750 pictures of dataset as basic components, in this way, we can initiate
convolutional kernel. After vision encoding, every image would transform into feature vector.

399



Figure 2: Convolutional Auto Encoder structure diagram.

3.3.Language Encode Module

We use the same DSL as was designed in pix2code, its grammar based on JSON which is
frequently used by front-end developer, it shows a great advantage on presenting elements’
hierarchical relationship. Braces present parent-child relationship and commas present sibling
relationship.

To encode DSL we introduce one-hot encoding and word2vec method to process word
embedding. The principle of one-hot encoding is to use the bit status register to encode each state,
each state occupies a registered bit, only one of which is valid at any time. That means one-hot
encoding maps discrete features to Euclidean space, making it possible to calculate similarity
between original features. But it usually comes with dimension explode and it ignores the link
between words.

Mikolov et al [5] proposed word2vec method which improve Neural Network Language Model
(NNLM) [6] which came up with the concept word embedding. Word2vec is consist of two model:
Continuous Bag-of-Words (CBoW) model and Continuous Skip-Gram model. The former learns
the expression of the word vector by predicting the target word through the context, and the latter
learns vectors of words nearby with the target word. CBoW can smooth the distribution of words,
which is like regularization, and can provide very good performance when the input data is not too
large. But the skip-gram model is more granular, so when we have a larger dataset, we can extract
more information, so it is a more accurate word embedding method. Thus, we choose skip-gram to
transform DSL to vector as language encoding.

Each word is specified as two d-dimensional vectors. Suppose a word is indexed in the
vocabulary as i. When the word is used as the target word, the vector is expressed as vi∈ℝd, and
ui∈ℝd as the context word vector, cwith index c is the target word, wo with index o is the context

400



word. The equation for calculating the conditional probability of a context word given a target word
is as follows:

䀨 �� �� � exp h������

��� exp h��
�����

(3)

We put special mark <START> at the beginning of every DSL files, and <END> at the ending,
just to tell our program when to start and when to end as flags. After language encoding, every word
would transform into word vector.

3.4.CNN-based Decode Module

Decoders based on convolutional neural networks use a feedforward method instead of a recurrent
method using RNN. We use a simple feedforward deep neural network to predict the probability
distribution. In order to be consistent with the description method based on the RNN decoder,
although it is possible to operate in parallel in the training of CNN models with all known truth
values, the "time step" is still used here to represent each word vector and graphic feature vector
Decoding process. We divide this part of work into three modules: convolution module, attention
module, and prediction module. Structure as shown in Figure 3.

Figure 3: CNN-based decode module structure diagram.

3.4.1. Convolutional Module

In the RNN-based decoder, the prediction of each word will depend on all the words before the
word entered at the current time step. Similarly, in the CNN-based decoder, we also need to prevent
future word vectors from being used for convolution operations at the current time step, so we use
masked convolution that only operates on past data.

Masked convolution is a convolution method proposed in pixelCNN [11]. Its role is to only
retain pixels’ data before the center point. E = [e1, e2, ..., el] are the word embedding vectors output
in the previous module, and its original content is a piece of DSL code containing l words. The
activation function GLU is introduced in the mask convolution layer, and its equation is as follows:

�� � � h� � �� � ⁶����h� � � � ��� (4)

401



Wl represents the weight matrix of the layer, bl and cl represent the offset of the layer, *
represents the convolution operation, and  represents the element multiplication. GLU is different
from ReLU which commonly used in convolutional neural networks. It is introduced after the
gating mechanism of LSTM. Since convolutional networks do not suffer gradient disappearance
which might occur in recurrent networks, there is no need to introduce forget gates.

The inference will start from the special mark <START> and sequentially perform each word of
DSL code as input. The image feature vector is connected with the word embedding vector as the
convolution input. After multi-layer masked convolution, the first time step of sampling is
completed and inferenced the first word ele1. Then ele1 is input into the feedforward network to
generate next word ele2, and so on, until current word is the end mark <END>, or until the upper
limit of the number of words we have reached. Since all truth values, that is, the words ele1, ele2, etc.
are known, all time steps can be performed simultaneously.

3.4.2. Attention Module

Attention mechanisms are also introduced in this section. We connect the image feature vector with
the word embedding vector of each layer. We calculate a separate attention parameter and a
separate attention vector for each word. The calculation equation of the attention parameter and the
image attention feature vector are as follow:

��� �
exp h悔�

�����

� exp h悔�
������

(5)

�� � ������� (6)

Where ej represents the j-th word embedding vector after convolution, vi represents the feature
vector at image i, U represents the linear layer applied to vi,  ij represents the attention parameter,
and A represents the image attention feature vector.

For different levels of DSL, the performance of convolution can actually obtain different
attention information from image features, so we use the hierarchical attention mechanism. The
hierarchical attention used in the RNN decoder is process one word vector followed by another
word vector, which can be understood as horizontal attention. In this section, the attention module is
added between every two convolutional layers, and there is also one before the final prediction
module. This kind of layer-to-layer approach can be called vertical attention. This can effectively
prevent lateral connections at the same layer, and can also train the entire DSL in parallel. Under
the function of the GLU, the overall calculation equations are as follow:

��
�t� � ���

� ����
�t�� �� (7)

�⍗� � �⍗
� � ��t� ��⍗

⍗�� � ⍗�
�t�

���

t
� ⁶⍗� (8)

�⁶
� � �⁶

� � ��t� ��⁶
⍗�� � ⍗�

�t�
���

t
� ⁶⁶

� (9)

�� � �⍗���⁶
� (10)

402



 can be calculated from (4), l represents the number of layers and W represents the weight
matrix.

3.4.3. Predict Module

This module consists of a neural network with a hidden layer. It takes the attention feature vector
output from the previous step and the convolutional content vector as inputs. Equations as follow:

��
䀨 � th�⍗

䀨�� ���
䀨�� � ⁶䀨� (11)

���� � ��t�W⍗āh�䀨��
䀨� (12)

The formula represents the operation of processing the word vector at position j in the sentence,
��
⍗��悔e���eand C represent the attention feature vector and the convolution vector, W represents the
weight matrix, and the function of the f function is f(x)=max(x, 0.1x). This module uses a 1×1
convolution kernel for the final prediction operation.

3.5.Training

We use a cross-entropy loss function to calculate the probabilities of CNN modules. Each pair of
data is composed of a PNG format image and a DSL code file. We use conv5_3 on attention
module and size of prediction module’s hidden layer is set to 1024 which λ is 1e-5. All images are
resized to 224×224 before training or inference in our program. We introduce RMSProp to optimize
and the learning rate is start with 1e-5 and after every 15 epochs it will decay 10%.

4. Experiments

We chose PixCo from pix2code to be our dataset. It contains 1750 pairs of web page screenshot and
corresponding DSL file. We separate it to 1500 pairs for training and 250 for testing. We operate 4
experiments in this section and 3 of them as baseline of the method we proposed. CNN+LSTM is
the original pix2code experiment. CAE+LSTM is an upgrade version of pix2code which change
former vision module into Convolutional Auto Encoder. CAE+CNN is our method without
attention modules, and the last experiment is out method. All of these experiments are operated in a
cloud server with Nvidia GTX1080 GPU and Intel Core i7 CPU and Ubuntu 16.04 LTS operating
system.

Figure 4: Image and DSL pair of PixCo dataset.

403



Table 1: Accuracy and error result.

Method
Accuracy Error

(%)BLEU1 BLEU2 BLEU3 BLEU4 METEOR ROUGE CIDEr

CNN+LSTM 0.8149 0.7581 0.6643 0.5821 0.4678 0.7254 3.0455 12.57

CAE+LSTM 0.8226 0.7675 0.6720 0.5874 0.4697 0.7074 3.1504 12.76

CAE+CNN 0.8395 0.7824 0.6896 0.6014 0.4475 0.7105 2.8745 12.23

CAE+CNN+Attention 0.8742 0.8251 0.7163 0.6285 0.4895 0.7547 3.3569 10.63

We compared CNN+LSTM method and CAE+LSTM method. Based on experimental result, we
found that after we add Auto Encoder, BLEU1 improved by 0.9%, BLEU2 improved by 1.2%,
BLEU3 improved by 1.1%, BLEU4 improved by 0.9%. The results show that CAE improves the
quality of the visual features to some extent, thereby improving the recognition accuracy, but the
effect is not obvious. We compared CAE+LSTM method and CAE+CNN method, it shows that after
CNN decoder is introduced, BLEU1 improved by 2%, BLEU2 improved by 3.2%, BLEU3 improved
by 2.6%, BLEU4 improved by 2.3%. The results show that the CNN decoder improves the accuracy
slightly, but it takes 0.35 seconds per batch for the one with CNN decoder and 1.04 seconds per
batch for the one with LSTM decoder (batch size is 32), which means CNN-based method is indeed
trained faster than RNN-based method. We compared our methods with or without attention
mechanism, it turns out that the full version of our algorithm has obviously higher accuracy and
lower error rate than each of other versions.

5. Conclusions

In this paper, we proposed a CAE+CNN framework with vertical attention mechanism to deal with
the problem of generate DSL code based on web page screenshot, and it proved to be a more
efficient and accurate method.

References

[1] Beltramelli, Tony. "pix2code: Generating Code from a Graphical User Interface Screenshot.".
[2] Vinyals, Oriol, et al. "Show and tell: A neural image caption generator." Proceedings of the IEEE conference on

computer vision and pattern recognition. 2015.
[3] Xu, Kelvin, et al. "Show, attend and tell: Neural image caption generation with visual attention." International

conference on machine learning. 2015.
[4] Simonyan, Karen, and Andrew Zisserman. "Very deep convolutional networks for large-scale image recognition."

arXiv preprint arXiv:1409.1556 (2014).
[5] Mikolov, Tomas, et al. "Efficient estimation of word representations in vector space." arXiv preprint

arXiv:1301.3781 (2013).
[6] Bengio, Yoshua, et al. "A neural probabilistic language model." Journal of machine learning research 3.Feb (2003):

1137-1155.
[7] Aneja, Jyoti, Deshpande, Aditya, and Schwing, Alexander. "Convolutional Image Captioning.".
[8] Van Deursen, Arie, Paul Klint, and Joost Visser. "Domain-specific languages: An annotated bibliography." ACM

Sigplan Notices 35.6 (2000): 26-36.
[9] Dauphin, Yann N., et al. "Language modeling with gated convolutional networks." Proceedings of the 34th

International Conference on Machine Learning-Volume 70. JMLR. org, 2017.
[10] Ng, Andrew. "Sparse autoencoder." CS294A Lecture notes 72.2011 (2011): 1-19.

404



[11] Van den Oord, Aaron, et al. "Conditional image generation with pixelcnn decoders." Advances in neural
information processing systems. 2016.

405




